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In earlier theoretical work it has been found that cantilevered pipes aspirating fluid at their free
end and conveying it toward the clamped end lose stability by flutter at infinitesimally small
flow velocities. It is shown here that this is false, and the necessary theoretical correction is
given. Moreover, an experiment is described supporting this new finding: aspirating pipes
appear to remain stable to at least high flow rates. © 1999 Academic Press

1. INTRODUCTION

EvEr sINCE Paidoussis & Luu’s (1985) work, it has tacitly been accepted that cantilevered
pipes aspirating fluid (i.e., with the fluid entering the free end and flowing towards the
clamped one) lose stability by flutter at infinitesimally small flow velocities. It should be
mentioned that this theoretical finding was never confirmed by experiment, as pointed out
by Dupuis & Rousselet (1991) and Paidoussis (1991). In fact, it has recently been shown that
this theoretical result is totally false (Paidoussis 1998), but unfortunately not soon enough
to stop others from following the earlier, false theory, as a minor or major component of
their work.

Whether the system loses stability at infinitesimally small flow is important not only in
terms of fundamentals, but also in practical engineering terms, namely, in the field of Ocean
Mining.

It was therefore thought to be useful to publicize the new finding in a separate paper, as
a service to the research community. The epigrammatic title follows the venerable and
laudable tradition instituted by Holmes (1978) in which the main conclusion of a paper is
succinctly stated in the title—in these busy times, a practice of considerable appeal.

2. BACKGROUND AND HISTORICAL PERSPECTIVE

Consider the simplest form of the linearized equation of motion of an undamped horizontal
cantilevered pipe conveying fluid,
0*w *w 0w 0*w
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where x and ¢ are the axial coordinate and time, respectively, EI is the flexural rigidity of
the pipe, M is the mass of fluid per unit length, flowing from the fixed end (x = 0) to the free
one (x = L) with a steady flow velocity U, m is the mass of the pipe per unit length, and w is
the lateral deflection of the pipe [see, e.g. Paidoussis (1998)]. Thus, for the present, we
consider the pipe discharging rather than aspirating fluid. The first term in equation (1) is
the flexural restoring force. Upon recalling that 0*w/dx* ~ 1/R, where R is the local radius
of curvature, it is obvious that the second term is associated with centrifugal forces as the
fluid flows in curved portions of the pipe. Similarly, the third term is recognized as being
associated with the Coriolis acceleration, and the last term represents inertial effects.

The dynamics of the system is well known for the case of U > 0. For sufficiently small U,
the dynamics is dominated by the Coriolis force 2M U (6*w/dx0t), and the system is
subjected to flow-induced damping. For sufficiently large U, however, the centrifugal force,
MU?(0*w/dx?), which may also be viewed as a compressive follower force, overcomes the
Coriolis damping effect, and thus the system loses stability by single-mode flutter via a Hopf
bifurcation.

Considering periodic motions of period T, it is shown (Benjamin 1961a; Paidoussis 1970,
1998) that the work done by the fluid on the pipe is equal to
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where (0w/0t);, and (0w/0x),, are, respectively, the lateral velocity and slope of the free end.
For small U > 0, the first term dominates, and the work done is negative; hence, the pipe
loses energy to the flowing fluid, and free pipe motions are damped. For high enough U,
however, the second term dominates; if the slope and velocity of the free end have opposite

signs over a period, (0w/0x);(0w/0t);, < 0, then the work done may be positive, and energy
flows from the fluid (a source of unbounded energy) to the pipe, resulting in amplified
oscillations. It should be noted that the aforementioned opposite-sign characteristic of the
free-end slope and velocity corresponds to the “dragging, lagging” modal form of flutter,
observed in experiments and commented upon by Bourrieres (1939), Benjamin (1961b) and
Gregory & Paidoussis (1966).

Consider next the situation with U < 0, i.e., the aspirating system. Exactly the opposite
conclusions may be reached by consideration of equation (2): (i) in the course of free
motions, the pipe absorbs energy from the fluid for all sufficiently small |U| and is
therefore subject to flutter; and (ii) for the higher |U]|, the pipe loses energy to the fluid, and
hence it is stabilized and its motions are damped. Consequently, the startling conclusion is
reached that the system is unstable for infinitesimally small |U| or, if dissipation is taken
into account, for very small |U]|.

These findings are confirmed by the full-fledged analysis of Paidoussis & Luu (1985)
for this very system, and also for systems modelling a vertical pipe of the type used for
ocean mining. Ocean mining is basically the ‘vacuuming’ of minerals, notably of
manganese nodules, which lie on the floor of the ocean, e.g. in the Northeast Pacific, at
depths of the order of 5 km. The system involves a very long “vacuum hose”, with a massive
“vacuum head” which walks along the ocean floor, scouring and sucking up nodule-rich sea
water. It is clear that, the moment the bottom head loses contact with the sea floor, the
system becomes a cantilevered pipe aspirating fluid and hence, by the foregoing arguments,
subject to flutter.

Clearly, if this were true, ocean mining could be in trouble. For a typical system
modelling an ocean mining pipe, including dissipative effects, the critical flow velocity for
up-flow was found to be |U| ~ 0-2 m/s (Paidoussis & Luu 1985), too small for comfort!
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Hence, it was decided that time was ripe for experimental verification of Paidoussis & Luu’s
theoretical finding.

Some early experiments at the Chalk River Nuclear Laboratories in the mid-1960s had
been inconclusive (Paidoussis 1998); hence, a new apparatus was built at McGill in 1986,
shown in Figure 1(a). The entire elastomer pipe, hung vertically, was immersed in water in
a steel tank; water was supplied at the top of the tank, and was forced up the hanging pipe
and out of the vessel. Compressed air could additionally be supplied at the top of the tank to
achieve higher flows over a limited time period, but also to conduct experiments entirely
with air up-flow. Several experiments were conducted, with thicker pipes to postpone the
shell-type buckling collapse (flattening) of the pipe,” and some with different-shaped inlet
forms added, but the system remained unnervingly stable. The experiment was discontinued
when, with ever increasing air pressure to force higher water flow up the pipe, the rubber
hose leading the water to the drain burst free of its clamp, spraying water all over the
laboratory and the instrumentation nearby, and giving the author an unwelcome cold
shower! At that point, the author was certain that something was amiss with the theory; for
one thing, the flow into the pipe is not exactly tangential, thus not replicating in reverse the
outpouring jet in the case of down-flow. However, these negative results were not published,
precisely because they were negative and not understood—which is why the tale is worth
telling.

It was in 1995, during a visit by the author to Cambridge and while recounting this
paradoxial behaviour that Dr D. J. Maull recalled reading “something similar” in Richard
Feynman’s biography (Gleick 1992). It turns out that in 1939 or 1940, Feynman’s and most
other physicists’ tea-time conversation at Princeton and the Institute for Advanced Study
was dominated by this problem: if a simple S-shaped lawn sprinkler were made to suck up
water instead of spewing it out [Figure 1(c)], would it rotate backwards or in the same way
as for normal operation? (This problem was tied to the issue of reversibility of atomic
processes!) Feynman could apparently argue convincingly either way.

Eventually, Feynman decided to do an experiment which, as shown in Figure 1(b), was
remarkably similar to the author’s. He immersed the lawn sprinkler into a glass jar filled
with water, with an outlet connected to the sprinkler and a compressed air supply to force
the water into the sprinkler and out. With increasing pressure and flow, the sprinkler
refused to budge, up to the point where the glass jar exploded, spraying water all over. The
result was that Feynman was banished from the laboratory henceforth!

Clearly, therefore, we have a paradox. Theory predicts that the aspirating pipe loses
stability for infinitesimal (or very small) flow velocity, but experiments show the system to
remain stable, at least to the maximum attainable flow prior to pipe collapse. Hence,
reversing the flow direction in the experiments does not invert the stability behaviour of the
pipe. Similarly, in Feynman’s sprinkler, reversing the flow direction did not reverse (nor
replicate) the direction of rotation.

3. RESOLUTION OF THE PARADOX AND NEW THEORY

Clearly, the flow field is entirely different in “forward” and “reverse” flow through the
sprinkler. This is the key that finally led the author to the resolution of the conundrum, for
both the sprinkler and the pipe problem. Consider the stationary aspirating sprinkler, and
imagine a flared funnel, not connected to it, channelling the flow in, thus modelling the sink

"This collapse, due to viscous pressure drop in the internal fluid, relative to the external stagnant fluid,
represents the ultimate limitation to the maximum flow that can be attained.

1t is with great sadness that this footnote is added. David Maull, a brilliant scholar and a good friend, passed
away on 3 January 1999 poignantly, over the same weekend that this paper was being written.
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Figure 1. (a) New apparatus for forcing the fluid up the pipe in experiments by Paidoussis at McGill in 1980s;
(b) Richard Feynman’s apparatus for resolving the sprinkler problem at Princeton in late 1939 or 1940; (c) the
sprinkler problem: which way does the sprinkler turn when aspirating fluid (Gleick 1992)?

flow. Neglecting gravity, the axial balance of forces in the funnel is given by (Paidoussis
1998)

0
x [T + p.A. — piA; — pi(4;U)U;] = 0, (3)

where now the internal flow velocity U; is directed from the free towards the clamped end,
and all quantities except p; are functions of x; p.(x) and p;(x) are the external and internal
pressures, and A,(x) and A;(x) the external and internal funnel cross-sectional areas. The
tension T is taken up by the imaginary funnel supports and may be ignored. Also, this
expression may be simplified by taking A, ~ A4, = A, and by writing U;= U and
pi — p. = p, and recalling that p;4;U; = MU = const. Then, integrating from x = oo,
where p —» 0 and U — 0, to x = L, the inlet of the sprinkler, we obtain (pA4), = — (MU?);.
Hence, since MU? is the same for all x < L, one can write

pA=—MU? (4)

which clearly shows that at the sprinkler inlet, and hence throughout, there is a suction or
negative pressurization, p = — pU? = — MU?/A. Its effect is profound, as may be seen in
Figure 2. The negative pressurization produces a lateral force pA/R = — MU?/R, R being
the radius of curvature, which totally cancels the centrifugal force M U?; hence, the sprinkler
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Figure 2. Negative pressurization and centrifugal force resultants on one arm of the sprinkler, effectively
cancelling each other out (Paidoussis 1998).

remains inert! An alternative demonstration of this result may be made by control volume
considerations and the fact that inlet and outlet vorticity is zero. Of course, these arguments
do not hold once some rotation of the sprinkler takes place, but may be considered to be
correct to zero order.

The same applies to the pipe problem. Unlike the case of discharging fluid where the
pressure at the free end (above the ambient) is zero, for the aspirating pipe there is a suction
at the free end, equal to — pU?2} and hence a negative pressurization equal to that,
throughout the pipe.” Therefore, a term equal to pA(0*w/0x?) must generally be added to
the equation of motion, where p is the pressurization (depressurization), and equation (1)
becomes

*w 0* 2 0*

w w w
El—; pA + MU?)—— + 2MU —— + (M — =0. 5

gxt T (PA+T MUD) 5oz +2MU = + (M Am) 2 ©
For “down-flow”, U >0, p=0. For up-flow, U <0, however, and as shown in the
foregoing, equation (4) may be used for pA, at least to zero order, and hence the centrifugal
force in equation (5) vanishes. With no centrifugal (or follower) force, flutter cannot occur in
the system!

4. EXPERIMENTAL VERIFICATION

In view of the past history of this system, and despite all the misadventures that have
befallen the author and Feynman earlier still, it was imperative to have experimental
verification that flutter does not occur.

Because of the problem of shell-type collapse of flexible pipes as the suction flow is
increased, a new approach was taken in which the principle underlying the mechanism
leading to flutter would be tested, rather than the phenomenon itself. Namely, it was

YMore generally equal to — pUUjin the case of a flared inlet segment of the pipe, where U is the flow velocity in
the flared segment.

Y This is not an inviscid flow result. Considering friction-related pressure drop, one obtains 0(pA — T)/0x = 0;
hence, pA — T =const throughout the pipe. Moreover, T, =0, while (pA),= —(MU?).; hence,
pA — T = (pA), = pA throughout.
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Figure 3. Schematic of the apparatus used to test the nonoccurrence of flutter in a pipe aspirating fluid.
1, identical, straight elastomer pipes; 2, identical rigid plastic elbows; 3, rigid metal piping, rigidly supported;
4, water-filled glass-walled basin in which the pipes were immersed. , shape of elastomer pipes for U = 0; - — -,

shape for higher U. In the case of the aspirating pipe, the two shapes are coincident.

decided to test whether a centrifugal force does or does not arise with aspirating flow, as it
does with discharging flow.

The apparatus constructed is shown in Figure 3. Two flexible straight elastomer pipes
were fitted with light but rigid plastic elbows at their ends and hung as cantilevers in
a water-filled basin. The clamped ends of the pipes were interconnected via a pump, such
that one was aspirating flow and the other discharging the same flow.

Once the pump was started, the pipe discharging fluid deformed in reaction to the
emerging jet, as expected. The aspirating pipe, however, after a starting transient returned to
its original, no-flow configuration and thereafter remained limply straight. Therefore, it is
now clear that aspirating pipes cannot aspire to flutter!

5. CONCLUSION

It has been shown that the earlier theory for aspirating pipes, which predicts that they are
subject to flutter at very small or infinitesimal flow velocities is false. Basically, the flow
entering the free end does not resemble a reverse jet, but rather a sink flow. Consequently,
there exists a suction at inlet and hence throughout the pipe, cancelling out the centrifugal
force which is at the core of the mechanism causing flutter—at least to first order. It is
possible that this cancellation is not complete to higher-order approximations, and hence
flutter cannot be excluded at high flow rates.
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At the same time, the conundrum of “Feynman’s sprinkler problem” has also been
resolved. The two problems of the pipe and the sprinkler have been found to be analogous.

An experiment demonstrated the effective disappearance of the centrifugal force in an
aspirating system, thereby lending support to the new theory.

Some aspects of the subject of this paper are discussed more amply in a recently published
book (Paidoussis 1998), as is the resolution of other “paradoxes” which may be of interest.
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